[Blindmath] Division of Polynomials

Amanda Lacy lacy925 at gmail.com
Sun May 4 04:36:20 UTC 2014


I'll send something on synthetic division next week and see if it makes 
sense to anyone.
On 5/3/2014 11:34 PM, Elise Berkley wrote:
> I will try the algorithm.  And, if I have any suggestions for you, I will email you.  Can you give me a little more on the algorithm?  Thanks.
> -----Original Message-----
> From: Blindmath [mailto:blindmath-bounces at nfbnet.org] On Behalf Of sabra1023
> Sent: Saturday, May 03, 2014 6:39 PM
> To: Blind Math list for those interested in mathematics
> Subject: Re: [Blindmath] Division of Polynomials
>
> I wish I could do those in my head, but I can't. However, I do think you want the algorithm because they will probably be more difficult to do in your head in the future. I do wish teachers and math textbooks with better accommodate students who don't learn spatially. I'm having a lot of trouble with this while trying to get my computer science degree. I get absolutely nothing out of my math classes. I even had a person in my last class to draw the graphs that were written on the board, but that didn't help much. I'm in there for twice a week for an hour and a half or longer, and I learned nothing during that time. I either have to learn it outside of class, or work one-on-one with someone. It is that way with science too. Now, that happened in my first computer programming class. I thought you're supposed to learn the most from being in class. Sorry, I know that's a bit off-topic, but it made me think of it.
>
>> On May 3, 2014, at 2:07 PM, Elise Berkley <bravaegf at hotmail.com> wrote:
>>
>> We are working on dividing binomials into trinomials and 4-term polynomials.  He just lectured on adding in the missing term (if missing) with a placeholder term (zero coefficient).
>>
>> -----Original Message-----
>> From: Blindmath [mailto:blindmath-bounces at nfbnet.org] On Behalf Of
>> Bill Dengler
>> Sent: Saturday, May 03, 2014 11:55 AM
>> To: Blind Math list for those interested in mathematics
>> Subject: Re: [Blindmath] Division of Polynomials
>>
>> Are you dividing a binomial    by a monomial or a binomial by a binomial? If the former, than the long division thing need not apply.
>>
>> Bill
>>> On May 2, 2014, at 5:31 PM, Elise Berkley <bravaegf at hotmail.com> wrote:
>>>
>>> Thanks everyone.  I can actually do them in my head (the ones we are
>>> solving now). But, if they get more difficult (which they will, with
>>> me majoring in math), I will have to struggle through it.  Thanks,
>>> Bill for that suggestion.  I'll try it, and if I don't get it, I'll
>>> email you again.  Elise
>>>
>>> -----Original Message-----
>>> From: Blindmath [mailto:blindmath-bounces at nfbnet.org] On Behalf Of
>>> sabra1023
>>> Sent: Friday, May 02, 2014 11:30 AM
>>> To: Blind Math list for those interested in mathematics
>>> Subject: Re: [Blindmath] Division of Polynomials
>>>
>>> There is a way to do it. Cited people just keep presenting things visually and can't think outside the box, no pun intended, to find another way to do it. I know someone who knows how to do it, but they haven't shown me yet. I just failed that section when I was in math before.
>>>
>>>> On May 2, 2014, at 12:04 PM, Bill Dengler <codeofdusk at gmail.com> wrote:
>>>>
>>>> Unfortunately, we never figured out a way for me to do these. My
>>>> math teacher did, however, find a way for me to find the correct answer for these types of questions if they were multiple choice. For example, if the question was 3x^3-5x+2/x+2, you would multiply all the choices by x+2, and if you got 3x^3-5x+2 then that was the correct answer. As far as factoring them goes, though, I just used the quadratic formula, x=(-b±√(b^2-4ac))/2a I would take the solutions I got from the Quadratic Formula to generate the factors, a(x-x1)(x-x2). In other words, distribute the a term to the quantity x minus your first solution for your first factor, and your second factor is the quantity x minus the second solution.
>>>> Hope that helped you. If you need clarification feel free to email me on or off list.
>>>> Bill
>>>>> On May 2, 2014, at 12:45 AM, Elise Berkley <bravaegf at hotmail.com> wrote:
>>>>>
>>>>>
>>>>>
>>>>> Hey, everyone!  My algebra instructor is working on division of polynomials.
>>>>> We are doing them in the long division manner (within the box).  I
>>>>> understand the concept and it comes easy for me.  But, does anyone
>>>>> have suggestions on how to read these problems in braille and
>>>>> translate them on the computer for my homework.  I only use Word,
>>>>> and I don't have any math-speaking programs.  Thanks for the help.
>>>>> Elise
>>>>>
>>>>>
>>>>>
>>>>> Elise Berkley
>>>>>
>>>>> "The joy of the Lord is my strength."
>>>>>
>>>>>
>>>>>
>>>>> <image001.jpg>_______________________________________________
>>>>> Blindmath mailing list
>>>>> Blindmath at nfbnet.org
>>>>> http://nfbnet.org/mailman/listinfo/blindmath_nfbnet.org
>>>>> To unsubscribe, change your list options or get your account info for Blindmath:
>>>>> http://nfbnet.org/mailman/options/blindmath_nfbnet.org/codeofdusk%4
>>>>> 0 g mail.com BlindMath Gems can be found at
>>>>> <http://www.blindscience.org/blindmath-gems-home>
>>>>
>>>> _______________________________________________
>>>> Blindmath mailing list
>>>> Blindmath at nfbnet.org
>>>> http://nfbnet.org/mailman/listinfo/blindmath_nfbnet.org
>>>> To unsubscribe, change your list options or get your account info for Blindmath:
>>>> http://nfbnet.org/mailman/options/blindmath_nfbnet.org/sabra1023%40g
>>>> m a il.com BlindMath Gems can be found at
>>>> <http://www.blindscience.org/blindmath-gems-home>
>>> _______________________________________________
>>> Blindmath mailing list
>>> Blindmath at nfbnet.org
>>> http://nfbnet.org/mailman/listinfo/blindmath_nfbnet.org
>>> To unsubscribe, change your list options or get your account info for Blindmath:
>>> http://nfbnet.org/mailman/options/blindmath_nfbnet.org/bravaegf%40hot
>>> m ail.com BlindMath Gems can be found at
>>> <http://www.blindscience.org/blindmath-gems-home>
>>>
>>>
>>> _______________________________________________
>>> Blindmath mailing list
>>> Blindmath at nfbnet.org
>>> http://nfbnet.org/mailman/listinfo/blindmath_nfbnet.org
>>> To unsubscribe, change your list options or get your account info for Blindmath:
>>> http://nfbnet.org/mailman/options/blindmath_nfbnet.org/codeofdusk%40g
>>> m ail.com BlindMath Gems can be found at
>>> <http://www.blindscience.org/blindmath-gems-home>
>> _______________________________________________
>> Blindmath mailing list
>> Blindmath at nfbnet.org
>> http://nfbnet.org/mailman/listinfo/blindmath_nfbnet.org
>> To unsubscribe, change your list options or get your account info for Blindmath:
>> http://nfbnet.org/mailman/options/blindmath_nfbnet.org/bravaegf%40hotm
>> ail.com BlindMath Gems can be found at
>> <http://www.blindscience.org/blindmath-gems-home>
>>
>>
>> _______________________________________________
>> Blindmath mailing list
>> Blindmath at nfbnet.org
>> http://nfbnet.org/mailman/listinfo/blindmath_nfbnet.org
>> To unsubscribe, change your list options or get your account info for Blindmath:
>> http://nfbnet.org/mailman/options/blindmath_nfbnet.org/sabra1023%40gma
>> il.com BlindMath Gems can be found at
>> <http://www.blindscience.org/blindmath-gems-home>
> _______________________________________________
> Blindmath mailing list
> Blindmath at nfbnet.org
> http://nfbnet.org/mailman/listinfo/blindmath_nfbnet.org
> To unsubscribe, change your list options or get your account info for Blindmath:
> http://nfbnet.org/mailman/options/blindmath_nfbnet.org/bravaegf%40hotmail.com
> BlindMath Gems can be found at <http://www.blindscience.org/blindmath-gems-home>
>
>
> _______________________________________________
> Blindmath mailing list
> Blindmath at nfbnet.org
> http://nfbnet.org/mailman/listinfo/blindmath_nfbnet.org
> To unsubscribe, change your list options or get your account info for Blindmath:
> http://nfbnet.org/mailman/options/blindmath_nfbnet.org/lacy925%40gmail.com
> BlindMath Gems can be found at <http://www.blindscience.org/blindmath-gems-home>






More information about the BlindMath mailing list