0.1 Division Algorithm

Notes: For simplicity I am assuming that both polynomials f and g are in the standard form - terms are ordered from highest to lowest degree. This actually is important. It will not work correctly if terms of the polynomials are not ordered by degree.

Note: All terminalogy is standard. However, $\operatorname{Lt}(f)$ refers to the leading term of the polynomial f. For example, if $f=-3 x^{4}+5 x+23$, then $\operatorname{Lt}(f)=-3 x^{4}$.
Given a polynomial $f(x)$ andg (x), thedivisionalgorithmrepresentsfasqg $+\mathrm{rwith} \mathrm{r} \neq f$ and q a polynomial in x. Set the initial value of the quotient and remainder, $q_{1}=r=0$. Begin with $i=1,1 \leq i \leq s$.

1. If the $L T(f)=a_{i} L T(g)$ for some a_{i}, a polynomial in x, then set $q=q+a_{i}$ and $f=f-a_{i} g_{i}$. Increment i and reiterate with the new value of f.
2. If the leading term of f is not divisible by any of the leading terms of polynomial in g, then $r=f$ and set $f=f-L T(f)$. Increment i and reiterate with the new value of f.
3. The algorithm ends when there are no terms remaining in f.

Each time this algorithm is iterated, $L T(f)$ is removed resulting in a polynomial of lower degree. Because the degree is decreasing and must remain above 0 , the division algorithm must terminate. If the algorithm takes n steps then it produces a quotient polynomial $q(x)=a_{1}+\ldots a_{n}$.

Example 1

Consider dividing $F=3 x^{3}+5 x^{2}+x-1$ by $g=x^{2}+1$.
Initial Conditions: $\mathrm{i}=1, \mathrm{f}=3 x^{3}+5 x^{2}+x-1, g=x^{2}+1$.
$L t(g)=x^{2}$
$\operatorname{Lt}(f)=3 x^{3}=3 x \operatorname{Lt}(g)$
$a_{i}=3 x$
$q=3 x$
$f=f-(3 x) g=3 x^{3}+5 x^{2}+x-1-3 x\left(x^{2}+1\right)=3 x^{3}+5 x^{2}+x-1-3 x^{3}-3 x=5 x^{2}-2 x-1$ increment i
$i=2$
$L t(g)=x^{2}$
$f=5 x^{2}-2 x-1$
$L t(f)=5 x^{2}=5 L t(g)$
$a_{i}=5$
$q=3 x+5$
$f=f-5 g=5 x^{2}-2 x-1-5\left(x^{2}+1\right)=5 x^{2}-2 x-1-5 x^{2}-5=-2 x-6$
increment i
$i=3$
$L t(g)=x^{2}$
$f=-2 x-1$
$L t(f)=x$
x^{2} does not divide into x. Therefore, $r=-2 x-6$ and the algorithm terminates with the values
$q=3 x+5$ and $r=-2 x-6$
Therefore, $F=3 x^{3}+5 x^{2}+x-1=(3 x+5)\left(x^{2}+1\right)+(-2 x-6)$.

Example 2

Consider dividing $F=2 x^{5}-7 x^{2}+1$ by $g=x^{2}+1$.
Initial Conditions: $\mathrm{i}=1, \mathrm{f}=2 x^{5}-7 x^{2}+1, g=x^{2}+1$.
$\mathrm{i}=1$
$L t(g)=x^{2}$
$L t(f)=2 x^{5}=2 x^{3} L t(g)$
$a_{i}=2 x^{3}$
$q=2 x^{3}$
$f=f-\left(2 x^{3}\right) g=2 x^{5}-7 x^{2}+1-\left(2 x^{3}\right)\left(x^{2}+1\right)=2 x^{5}-7 x^{2}+1-2 x^{5}-2 x^{3}=-2 x^{3}-7 x^{2}+1$ increment i
$\mathrm{i}=2$
$L t(g)=x^{2}$
$f=-2 x^{3}-7 x^{2}+1$
$L t(f)=-2 x^{3}=-2 x L t(g)$
$a_{i}=-2 x$
$q=2 x^{3}-2 x$
$f=f--2 x \operatorname{Lt}(g)=-2 x^{3}-7 x^{2}+1--2 x\left(x^{2}+1\right)=-2 x^{3}-7 x^{2}+1+2 x^{3}+2 x=-7 x^{2}+2 x+1$
increment i
$\mathrm{i}=3$
$\operatorname{Lt}(g)=x^{2}$
$f=-7 x^{2}+2 x+1$
$L t(f)=-7 x^{2}=-7 L t(g)$
$a_{i}=-2 x$
$q=2 x^{3}-2 x-7$
$f=f--7 \operatorname{Lt}(g)=-5 x^{2}+2 x+1--7\left(x^{2}+1\right)=-7 x^{2}+2 x+1+5 x^{2}+5=2 x+8$
increment i
$\mathrm{i}=4$
$L t(g)=x^{2}$
$f=2 x+8$
$L t(f)=2 x$
x^{2} does not divide into $2 x$. Therefore, $r=2 x+8$ and the algorithm terminates with the values
$q=2 x^{3}-2 x-7$ and $r=2 x+8$
Therefore, $F=2 x^{5}-7 x^{2}+1=\left(2 x^{3}-2 x-7\right)\left(x^{2}+1\right)+(2 x+8)$.

The few times I have taught Pre-calculus, the focus is on using this to factor polynomials. Therefore, if g is a factor of the polynomial f, the remainder is 0 . This is not the case in either of the examples above. Most importantly, if $g=x-a$ for some constant a, then a is a root of f if and only if the remainder of f divided by g is 0 .

