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Abstract: Raman spectra of human skin obtained by laser excitation have been used to non-invasively
detect blood glucose. In previous reports, however, Raman spectra thus obtained were mainly
derived from the epidermis and interstitial fluid as a result of the shallow penetration depth of lasers
in skin. The physiological process by which glucose in microvessels penetrates into the interstitial
fluid introduces a time delay, which inevitably introduces errors in transcutaneous measurements
of blood glucose. We focused the laser directly on the microvessels in the superficial layer of the
human nailfold, and acquired Raman spectra with multiple characteristic peaks of blood, which
indicated that the spectra obtained predominantly originated from blood. Incorporating a multivariate
approach combining principal component analysis (PCA) and back propagation artificial neural
network (BP-ANN), we performed noninvasive blood glucose measurements on 12 randomly selected
volunteers, respectively. The mean prediction performance of the 12 volunteers was obtained as an
RMSEP of 0.45 mmol/L and R2 of 0.95. It was no time lag between the predicted blood glucose and
the actual blood glucose in the oral glucose tolerance test (OGTT). We also applied the procedure to
data from all 12 volunteers regarded as one set, and the total predicted performance was obtained
with an RMSEP of 0.27 mmol/L and an R2 of 0.98, which is better than that of the individual model
for each volunteer. This suggested that anatomical differences between volunteer fingernails do
not reduce the prediction accuracy and 100% of the predicted glucose concentrations fall within
Region A and B of the Clarke error grid, allowing acceptable predictions in a clinically relevant range.
The Raman spectroscopy detection of blood glucose from microvessels is of great significance of
non-invasive blood glucose detection of Raman spectroscopy. This innovative method may also
facilitate non-invasive detection of other blood components.

Keywords: Raman spectroscopy; microvessels; blood glucose; non-invasive; PCA; BP-ANN; Clarke
error grid

1. Introduction

After cancer and cardiovascular disease, diabetes has recently become the third most common
chronic disease, causing serious damage to human health [1]. Diabetes, which has been declared a
global epidemic by the World Health Organization, is a worldwide epidemic affecting 422 million
people and may pose a tremendous threat to public health in the coming years [2]. Diabetes is a chronic
disease in which insulin cannot be produced or cannot be used properly by the body. Insulin needs to
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absorb glucose from the blood and generate energy. When the insulin cycle is defective, glucose will
not be removed from the blood, causing an accumulation [3]. Leaving diabetes untreated may lead to
severe consequences, including kidney failure, cardiovascular and birth defects [4]. Although a cure
for diabetes has not been found, researches reveal that effective glycemic control reduces complications
and prolongs life of diabetics for 5 to 8 years [5]. The most advanced glucose monitors, which use
electrochemical testing strips, require diabetic patients to lance their fingers and test drops of blood
several times a day [6]. This testing not only causes pain in diabetic patients several times a day, but also
may pose an infection risk. The above reasons explain why blood glucose monitoring has not been
carried out as often as recommended over the years [7–9]. Even with significant technical challenges,
the goal of eliminating pain and increasing the convenience for diabetic patients has motivated scientists
to develop non-invasive glucose monitoring devices [10]. For this reason, the creation of a non-invasive
approach for blood glucose measurement has long been regarded as the holy grail.

Optical methods, including microwave spectroscopy [11], optical coherence tomography [12,13],
near-infrared (NIR) spectroscopy [14], polarimetry [15], Raman spectroscopy [16–18] and fluorescence
techniques [19], have been considered as accurate and painless means of blood glucose detection.
Among the distinct optical techniques used in glucose measurement, Raman spectroscopy is one of
the most promising optical approaches [16,20]. Raman scattering offers molecular “fingerprinting”
capability as a result of the inelastic interactions between the incident photons and molecular
vibrations [21]. Raman spectroscopy has several advantages, including the following: without
destruction to the sample, capability for qualitative measurements, excellent chemical stability, ability
to obtain molecular structure information with high spatial resolution; and Raman spectroscopy does
not require reagents or separation [16,22]. Compared to other optical methods, Raman spectroscopy
has the unique superiority to provide clear and intelligent information for human skin, along with
the glucose molecule [20,23,24]. Moreover, comparing with NIR absorption spectroscopy, Raman
spectroscopy is less prone to incorporate opportunistic correlations by the calibration models [22].

Scientists continuously promote the development of non-invasive Raman blood glucose testing
by detecting the various body fluids related to human blood glucose. The studies of using numerous
body fluids including tear fluid [25,26], salivary [27], and sweat [28] instead of blood [29] have shown
that Raman spectroscopy is a powerful tool for non-invasive detection of blood glucose. However,
the problem is still to be resolved of not achieving high average correlation coefficient and longer time
lag [30,31]. Tear, saliva and sweat have all been used as optical detection substance because they are
easily accessible, related to blood glucose and completely non-invasive, and safe enough for human
body. However, their shortcomings are also obvious, the glucose concentration is low, the pH variance
is high, and the time lag is long. Especially the saliva, the remaining food or drinks will affect the
accuracy of the data [8]. Several methods have been reported for the detection of blood glucose levels
using in situ Raman spectroscopy. Since the depth of penetration of the excitation light is very shallow,
it is only 200 µm, the stratum corneum (SC) and epidermis of most sites in the human body are so thick
that the laser cannot reach the dermis while the microvessels only exist in the dermis [32]. Therefore,
in the transcutaneous Raman blood glucose test, scientists usually only obtain the Raman spectrum of
the SC and epidermis. That is to say, most of these spectra are derived from the ISF in the epidermis,
not in the dermis.

Glucose in the microvascular of the dermis diffuses to the epidermis. A physiological lag is
inevitable between blood and ISF glucose [29,33]. In addition, the concentration of ISF glucose is also
significantly lower than that of blood glucose [34]. It is well known that the excitation efficiency of
Raman scattering is very low, and its intensity is only one thousandth of Rayleigh scattering. In order
to obtain a low concentration of ISF glucose percutaneously, many of the existing work has focused on
improving the detection instrument to increase the Raman spectral intensity of blood glucose [35–37].
But the main challenge is that physiological lag creates an inconsistency in prediction model based on
blood glucose concentrations and Raman spectra of ISF glucose in the epidermis [29]. These problems
can be avoided if Raman information is obtained directly from the blood. Recently, Shao et al. have
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shown that by focusing the laser directly on selected blood vessels of live mice, strong background
signals generated by surrounding tissues were reduced successfully [38]. Fortunately, the skin at the
special anatomical site of the human body has an ultra-thin SC and a nearly transparent epidermis,
while also having a high density of blood vessel, such as nailfold [39,40].

In this study, we collected the Raman scattering photons of blood by focusing excitation light
on volunteer microvessels in the nailfold. The obtained Raman spectrum contains significant
blood characteristic peaks. The blood glucose concentrations of the human body were predicted in
combination with principal component analysis (PCA) and back propagation artificial neural network
(BP-ANN). Compared to the results reported in the literature, the results from 12 volunteers showed
that we obtained higher correlation coefficients and lower root mean square errors.

2. Results and Discussion

2.1. OCT Imaging of Fingertip and Nailfold

In this study, a portable spectral domain Optical Coherence Tomography (OCT) (MOPTIM,
Shenzhen, Co., Ltd., Shenzhen, China) system was applied in collecting images with a light source
whose central wavelength is 830 nm. The OCT was controlled by a portable personal computer system
operation automatically, and it select a 2-D OCT image every minute. Before storage, the detector is
demodulated by a lock-in amplifier and a low-pass filter in the software.

Nailfold refers to the small area of the skin beneath the nail, which is shown in Figure 1a in red.
Figure 1b shows the microscopic images of nailfold. The microcirculation detector and microcirculation
analysis software of Beijing Defense Biological Technology Co., Ltd. (Beijing, China) were used.
The microcirculation detector is a microscope with visible light illumination that is connected to a
computer to store data which is usually used to observe the morphology of the microcirculation.
The microvessels structure parallel to the skin surface of the nailfold can be seen clearly. This indicated
that the nailfold’s SC and epidermis are very thin and they also have good light transmittance. Figure 1c
shows the longitudinal section of the nailfold through human skin layers, including the SC, epidermis,
dermis and subcutaneous tissue. The SC contains hornified cells and no ISF volume [41]. Epidermis is
an avascular epithelial membrane and does not contain microvessels. The ISF volume in the epidermis
increases from nearly absent in the SC to ~40% in the basal layers [41–43]. The dermis contains
many arteries, venules and microvessels, including the vascular plexus that is interfacing dermis
and subcutaneous tissue [29]. Figure 2a,b are the OCT images of fingertip and nailfold from a same
volunteer, respectively. In Figure 2a, we can see that the stratum corneum at the fingertip is about
130 µm and the epidermis is about 180 µm, which means that the microvessels in the fingertip dermis
are below 300 µm on the skin surface. Because the Raman spectroscopy is measured at the depth of
100–200 µm in the skin, this shows that the Raman spectra we gathered including much information
from the stratum corneum and epidermis at the fingertips, and there is almost no information from
the dermis [32]. In Figure 2b, the stratum corneum in the nailfold was not observed, which indicates
that the stratum corneum here is thin enough to exceed the resolution of OCT. The nailfold contains a
thinner epidermis that is only about 100 µm and we can gather more information from the dermis
which the microvessels are only found in it.
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2.2. Spectral Analysis

Figure 3 shows typical Raman spectra of a volunteer in one-day OGTT experiment. We found
that the changes in blood glucose concentration did not result in large changes in the Raman peaks
visible to the naked eye. These spectra contain a lot of Raman peaks of the blood.

Table 1 summarizes spectra peaks of the microvessels and in vitro blood. The Raman spectra
obtained by focusing laser on the microvessels in the nailfold. The Raman peaks appearing at 650 cm−1,
758 cm−1, 837 cm−1, 945 cm−1, 978 cm−1, 1004 cm−1, 1130 cm−1, 1163 cm−1,1217 cm−1, 1332 cm−1,
1551 cm−1 and 1660 cm−1 are obvious, which also exist in the blood [44,45]. This suggests that the
Raman spectra of microvessels obtained at the nailfold is mainly from the blood in the microvessels.
In the literature the Raman peaks of blood previously tested in the fingers and forearms, are not
significant, and the spectra of the fingers and forearms are mainly from the epidermis and interstitial
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fluid [46,47]. During the lasting 2.5 h of the experiment, blood glucose was the only variable. The data
of 30 pairs of Raman spectra and the corresponding blood glucose levels were gained in each glucose
correlation test. It seemed that numerous spectral features changed over time, which were caused by
changes in blood glucose. Changes in blood glucose concentration had effect on the intensity of the
Raman peak. Because the Raman cross-section of glucose is small, in the Raman spectra detected by
12 volunteers, we did not find any Raman peaks changing regularly with changes in blood glucose
concentration. That is, in the Raman spectra we detected from the microvessels, the glucose peak
of the physiological concentration was not visible while other substances in the blood and tissues
surrounding the blood vessels contribute more to these peaks. And it is difficult to analysis the spectra
based on the single peak of the lower concentration compounds like glucose [16]. Therefore, a more
thorough data analysis method was then implemented.Molecules 2019, 24, x FOR PEER REVIEW 5 of 14 
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Figure 3. The typical Raman spectra of volunteers during the OGTT experiment. The different colors
represent blood glucose levels at different times in one day.

Table 1. Assignments of Raman peaks that are identified in the spectra of the microvessels and
blood [45–48].

Peak Position (cm−1)
Assignments Components

Microvessels Blood

650 643 p:C–S str Ascorbic acid
758 752 ν15 Trp
837 827 γ10 Fructose
858 855 ν(C–C) Tyr, lac
885 - - -
902 898 p:C-C skeletal Tyr
945 940 ν(C–C) Citric acid
978 971 p: Skeletal vibr Fibrin

1004 1004 ν-ring Phe
1027 1026 δ(=CbH2)asym Lac
1130 1129 ν5, Lac
1163 1157 ν44 Heme
1217 1212 ν5 + ν18 Heme
1320 1321 p:CH2 twist Try
1332 1341 ν41 Trp
1424 1423 ν28 Acetates
1448 1450 δ(CH2/CH3) Trp
1551 1546 ν11 Heme
1608 1603 ν (C=C)venyl Heme
1660 1653 Amide I Heme

Abbreviations: ν & δ: In-plane modes, γ: Out -of- plane modes, asym: asymmetric, Str: stretching, p: protein.



Molecules 2019, 24, 1500 6 of 14

2.3. PCA and BP-ANN Model

Considering changes in blood glucose can also cause changes in tissue turbidity and light
transmittance, and blood glucose may interact with other substances in the blood to cause changes in
other substances, which may cause nonlinearities in blood glucose concentration and Raman peaks [16].
In this paper, we used the BP-ANN as a nonlinear algorithm which can handle both nonlinear and
linear relationships for increasing the testability of the low blood glucose concentration from Raman
spectra. During the data processing, PCA and BP-ANN were used together to predict the blood glucose
concentrations from the non-invasive measurements.

In order to eliminate redundant interference, PCA was used for reducing the dimensions of the
spectral matrix [49]. Then the optimal principal component (PC) could be selected as the inputs of
BP-ANN. It is necessary to compress data for high-dimensional data sets containing multiple large
variables. PCA is considered as a data compression technique for spectroscopic data. The common
characteristics of the Raman spectra obtained in the process of glucose variations from low to high
values can be analyzed by PCA. Extracting the main components of the Raman spectra of volunteer
1, the contribution rates of the first three principal components, PC1/PC2 and PC3, were 80.065%,
14.982%, 3.157%, and the cumulative contribution rate was 98.204%. These data can explain most of
the spectral feature differences. The PC of other volunteers also has a high proportion. Therefore,
we replace the original spectral data with the PCA processed data as the input value of the BP-ANN.

After data pretreatment by PCA, we used the BP-ANN model for predicting the blood glucose.
Over the last few years, ANN has been used more and more popular in the qualitative and
quantitative analysis because of its advantages including anti-interference, anti-noise and strong
nonlinear transmission capability. Among them, the most widely used is the BP-ANN model [50].
With the ability to realize highly nonlinear mapping between input and output, the BP-ANN model
is a formidably research system which is demonstrated that the model can achieve any continuous
nonlinear curve [51]. The BP-ANN is chosen for the reason that it can handle both linear and nonlinear
relationships. A BP-ANN is usually composed of three layers: input layer, hidden layer and output
layer. The tansig function is widely used in the transfer function between the input layer and the
hidden layer, and the purelin function is used between the hidden layer and the output layer. The input
layer has the same number of input nodes as the number of principal components. We could improve
the network performance and create an ideal calibration model by changing the number of hidden
layer nodes. The output layer had one neuron, the glucose concentration. The training time was set to
18 times.

Based on the studies, we have obtained the optimal network structure, in which the number of
nodes of the input layer, hidden layer and output layer are 3, 4 and 1. After the model parameters are
selected, the preferred parameters of the BP-ANN model are as follows: the number of neurons is 3,
the number of learning is 100, the learning rate is 0.01, the learning momentum is 0.7, and the learning
goal is 0.001. Through the model training, the BP-ANN model training error meets the accuracy
requirements, and the model grasps the information in the sample.

2.4. Model Reliability

The two correction parameters: the root mean square error of prediction (RMSEP) (1) and the
squared correlation coefficient (R2) (2) are usual metrics that evaluate the stability and the reliability of
the dependability model:

RMSEP =

√∑n
i=1(ŷi− yi)2

n
(1)

R2 = 1−

∑n
i=1(yi− ŷi)2∑n
i=1(yi−

_
y)2 (2)
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where yi is the result of the reference measurement, n is the number of samples included in the
forecasting set, ŷi is the estimated result for sample i and

_
y is the average of all tested values.

2.5. Statistical Analysis

Figure 4 shows the comparison between the first volunteer’s real blood glucose and his estimated
blood glucose on Day 10. The calculated RMSEP is 0.28935 mmol/L, with R2 of 0.97927. The relatively
low RMSEP indicates that the model has a high forecasting capability and therefore that this calibration
is precise. The value of R2 indicates that there appears an excellent linear relationship between the
real value and the predicted validated results. Figure 5 shows a comparison of the predicted glucose
concentration to the corresponding reference data from the first volunteer. During rapid blood glucose
changes, the lag time of the microvessels in the nailfold of the volunteer was almost 0 min. This is
mainly because the spectra were collected from volunteer’s blood of nailfold where we can focus on the
microvessels. That procedure was applied to the 12 volunteers. The result of the validated calibrations
for the data set is summarized and shown in Table 2.
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Table 2. RMSEP and R2 for the 12 volunteers.

Volunteer RMSEP (mmol/L) R2

1 0.28935 0.97927
2 0.38727 0.95650
3 0.39516 0.95986
4 0.50273 0.93288
5 0.48272 0.93581
6 0.46750 0.94744
7 0.38724 0.96071
8 0.79781 0.87743
9 0.39834 0.95375
10 0.36541 0.96559
11 0.48413 0.94198
12 0.48610 0.93737

Mean 0.45365 0.94572
All 0.26601 0.98392

The mean prediction performance of the 12 volunteers was obtained as RMSEP of 0.45 mmol/L
and R2 of 0.95. The Day 1–Day 9 of the 12 volunteers were used as the calibration set, and the Day 10
was used as the prediction set, we obtained the total predicted performance of all volunteers with
RMSEP of 0.27 mmol/L and R2 of 0.98. We observed that the method performs outstandingly for the
calibrations for all volunteers. The calibration spectra drayed from the microvessels in the nailfold
in vivo measurement shows high quality, providing clear evidence of the ability to sense the blood
glucose immediately.

As shown in Figure 6, after predicting the blood glucose of Day 10 of all 12 volunteers with PCA
and BP-ANN, we plotted the predicted and reference values in the Clarke error grid. The Clarke
error grid was established by Clarke and co-workers to evaluate the clinical utility of systems for
blood glucose monitoring [52–54]. Now it is usually used to assess the accuracy of blood glucose
measurements to the standard reference value. It is divided into five regions. Region A and Region B
represent valuable correct clinical decision with Raman predictions and acceptable clinical error in
either direction. While the Region C, D, E are increasingly harmful incorrect decisions [55]. From the
Figure 6, we can see that all prediction values exist on Region A and Region B. This can further support
the applicability of transcutaneous spectral measurements in microvessels for glucose monitoring.

Its enhanced sensitivity and reliability will meet medical use standards [8], and the lag time
in microvessels of the volunteer was almost 0 min. This site effectively improves the accuracy of
non-invasive blood glucose detection and greatly exceeds the precision of previous test results
using Raman spectroscopy. This kind of non-invasive technique will be valuable for a wide
variety of laboratory tests and clinical settings. The nailfold’s predictiveness of blood glucose
is superior to the previous predictions of the forearm (MAE = 7.8%, R2 = 0.83) and fingertip
(RMSEP = 13.63 mg/dL, R2 = 0.91), which is an improvement of non-invasive blood glucose detection
using Raman spectroscopy [46,56].
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3. Materials and Methods

3.1. Experimental Setup

A Renishaw inVia confocal Raman spectrometer (Renishaw, Inc., New Mills, UK) was applied in
collecting all data from volunteers. A block diagram of the Raman measurement apparatus is presented
in Figure 7. The solid box in the inset in Figure 7 is the detection site located in the right hand of the
volunteer; the laser was focused on the microvessels in the nailfold. Raman spectra were obtained using
the micro-Raman system. It is equipped with a 300 mW near-infrared diode laser with a wavelength of
785 nm excitation. The laser beam was positioned with a Raman imaging microscope (Leica, Shanghai,
China) equipped with a 20× objective lens (numerical aperture = 0.35). A charge-coupled device (CCD)
array detector was used to detect signals from a 1200 grooves/mm grating light path controlled by
Renishaw WiRE software version 3.2. Before the experiment, a silicon wafer was used to calibrate the
Raman system. Each spectrum was collected by using 6 accumulations of 4 s exposure time within the
range 552–1675 cm−1. The incident power on the samples was around 13 mW, which is well below the
maximum permissible exposure for continuous wave laser skin illumination at 785 nm. None of the
volunteers suffered any discomfort during the test or appeared any skin injury afterwards.
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3.2. Study Subjects

The experiments were implemented out on 12 volunteers (six men and six women) who were
23 years old or older (average age 25 years). The subjects were in excellent health and taking no
medications. Signed informed consents were obtained from all participants prior to experiment.
Non-invasive blood glucose measurement was carried out according to the following experimental
protocol. Healthy volunteers were seated and allowed to acclimate for 30 min at room temperature
(25 ◦C) prior to measurement.

For the purpose of having a wide variety of blood glucose concentrations in the non-invasive
blood glucose measurement experiment, OGTT was recommended; the OGTT is a test measuring
the response to a glucose load for the clinical diagnosis of diabetes [48,57]. For a healthy person,
various glucose concentrations can be obtained within several hours during this test. The OGTT is a
commendable experimental approach for obtaining a calibration model with a certain concentration
variety, which provides another way to study non-invasive blood glucose measurement by Raman
spectroscopy. The detection site was cleaned with medical-grade alcohol prior to each experiment,
in order to eliminate the influence of dirt or sweat.

3.3. Experimental Protocol

The experiment was usually performed in the morning, when after 12 h of fasting, the volunteers
were asked to drink 250 mL water with 75 g glucose in 5 min. The Raman spectrum was gathered from
the nailfold of the volunteer’s fourth finger. The fingertip was placed under the probe head, and the
objective lens was adjusted to focus on the microvessels of each volunteer’s nailfold. Clay was used to
stabilize the fingers, and humidity between the clay and the surface of the fingers can fix the nailfolds
on the light spot. With the help of clay, slightly uncontrolled shaking and manual displacement
can be eliminated, and the stability of human spectra will be improved. The volunteers were in a
comfortable state, and the wrists, tested finger and arm were well fixed. Every spectrum was formed
by averaging six consecutive 4 s acquisitions. Spectra were got every 5 min throughout 2.5 h, making
up a “measurement series” for each volunteer (30 spectra per series).

During the period, the volunteers were asked not to move to minimize motion artifacts, and no food
and drinks were allowed. In addition, the measurement site, measurement pressure and psychological
state of the volunteers were kept constant as much as possible during the sampling. The fingers
of the unengaged hand were pricked every 5 min by a glucose meter, the OneTouch (Johnson &
Johnson, New Brunswick, NJ, USA), to obtain reference blood glucose measurements. During the
measurement, the blood glucose concentration usually doubles and then returned to the initial value.
For all volunteers, the blood glucose concentrations ranged from 5.8 to 12.0 mmol/L.
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3.4. Data Treatment

Data processing and advanced statistical analysis were implemented using MATLAB (R2014a)
and the software R (2.8.1) (Auckland, New Zealand). Each spectrum was first treated with WiRE 3.2
software to eliminate cosmic ray interference, and then was preprocessed by a fifth polynomial fit
subtraction method to baseline correction with the software R. Before a BP-ANN model was built for
prediction of blood glucose level, PCA carried out to reduce the dimensions of input variables.

According to the researches of PCA, BP-ANN model was developed by choosing tansig as the
transfer function of the hidden layer. In the BP-ANN algorithm, personal spectral data is procedurally
divided into two subsets: the first one is called a calibration set and the other is a prediction set.
The calibration data are used to establish a calibration vector that is used to evaluate the accuracy of
the calibration model.

The performance of the model could be evaluated with the comparison of the differences between
the concentration predicted by the model and the concentration measured by the reference method.
In the BP-ANN algorithm, 300 samples for each volunteer were split into a model set, and a predicting
set at random; the model set included 270 samples, and the latter set contained 30 samples. In the
BP-ANN algorithm, the data from the Day 1 to Day 9 were collected to build a model set, which was
used to predict the blood glucose levels of the Day 10.

4. Conclusions

In our study, Raman spectra containing significant blood characteristic peaks were obtained by
focusing the laser on the microvessels in the superficial layer of the nailfold. This shows that although
the transmission depth of the Raman spectroscopy in the skin is about 200 µm, for most sites of the
human body, we can only collect the Raman signal of the SC and the epidermis, and it is impossible
to obtain the blood which only presents in the dermis. However, there are some specific sites in the
human body which allow this. Because of the extremely thin SC and the high light transmittance of
the epidermal layer, it is possible to obtain the Raman spectra mainly originating from blood in the
dermis. Unlike the previously reported transdermal Raman spectroscopy method for detecting blood
glucose, the Raman spectra we used mainly derived from blood replaced the Raman spectra derived
from the epidermis and interstitial fluid. We used the algorithm combining PCA and BP-ANN to
predict the blood glucose for 12 volunteers. The mean prediction performance of the 12 volunteers
was obtained as an RMSEP of 0.45 mmol/L and R2 of 0.95. And the total predicted performance of
all volunteers was obtained with an RMSEP of 0.27 mmol/L and R2 of 0.98. Using the Clarke error
grid to evaluate the method, we got good results. 100% of the predicted glucose concentrations fall
within Region A and B, making acceptable predictions in a clinically relevant range. The predictiveness
is superior to the previous predictions in literature. The reason for achieving such high prediction
accuracy may be that the Raman spectra we used mainly derived from blood instead of the epidermis
and interstitial fluid, thus avoiding the physiological lag between blood glucose and ISF glucose,
and ensured consistency with the used spectra in the calibration model. The non-invasive blood glucose
monitoring of Raman spectroscopy obtained from the microvessels blood may indicate the direction
for the future. Furthermore, this novel method of obtaining Raman spectra of blood by focusing the
laser on microvessels in the skin can also be applied to rapid non-destructive detection of other blood
components, such as prediction of hemoglobin levels and measurement of glycated hemoglobin.
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