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Abstract. Indoor localization and navigation systems for individuaith visual
impairments (VI) typically rely upon extensive augmentatiéthe physical space
or expensive sensors. Thus, few systems have been adoptsdvdik conducts
a feasibility study of whether it is possible to localize ayude people with VI
using inexpensive sensors, such as compasses and pedomkiehnsare available
in portable devices like smart phones. The proposed appttafels advantage of
interaction between the system and the human user, who confimmsesence of
landmarks. Experiments are employed to study what kind of tilines are suc-
cessful in assisting human users to reach their destindtf@se experiments show
that Bayesian localization tools provide sufficient accyravhile achieving real-
time operation, despite the minimalistic, noisy nature of senand the limited
computational resources available on smart phones.
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1. Introduction

Whereas sighted people primarily use vision to navigateyidals with Vision Impair-
ments (VI) employ compensatory senses (e.g., touch),tieguh reduced mobility. To
address this issue, a number of navigation systems havedaseioped. Outdoor sys-
tems rely upon GPS, which is not available indoors. Indoart&ms often require phys-
ical augmentation of the environment, such as RFID tagsug@hdrFID tags are cheap,
they are typically embedded in floors with a resolution oeseitags per square feet [1].
Though embedding tags in carpets is feasible, hallwaysrge lapen spaces often have
tiles or concrete floors which makes installing tags prdhiglly expensive. Alternatives
utilize sophisticated sensors, such as cameras or lasgefiaders, which are expensive
and may impede mobility due to weight [2].

This paper proposes a low-cost solution that does not reghiysical augmentation
and depends on affordable, light-weight sensors, such edameter and a compass, that
are already available on popular devices, such as smarieghdine approach utilizes
interaction with the user through an audio/speech interfagrovide directions using
landmarks that are recognizable by individuals with VI,lsas doors, hallway intersec-
tions and floor transitions. The user confirms the presendkeofandmarks along the
provided path through a smart phone, based on the Android'@iS allows the system
to track the user’s location by using the sensor readingsylatge of the indoor envi-
ronment and the user’s landmark confirmations. The prenfigee@pproach is that:
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e Individuals with VI are effective in recognizing landmarksough touch, for exam-
ple using a cane, in their daily navigation [3, 4]. The prambsystem, through in-
teraction with the user, employs these landmarks to guideisiers and track one’s
location.

e Indoor spaces, while complex, are often highly constraifi@d example, a human
has to cross a door to enter a room, an easily recognizabhé bye user with VI.
Veering is less likely to occur in hallways due to the presesfowalls.

e While compasses and pedometers are erroneous, when istkgnathe proposed
overall scheme, they provide a sufficiently good initialrastte for the user’s motion.

The first objective is to show that the overall scheme sucestth in guiding a user
with VI to a desired destination in an indoor environmente Tacalization approach uti-
lizes Bayesian tools based on particle filters and is ableatktthe user employing the
limited resources of portable devices. Each particle eggsithe user’s location and car-
ries a weight of how probable this estimate is. As the userasazach particle is updated
based on data received from sensors, using the map of th@ement to prune improb-
able transitions and landmark confirmations to recompuight® Resetting techniques
are employed in the case the weight of all particles is equ@l t

The second objective is to emphasize that the method
performance depends on the directions provided to the ug
Thus, this paper compares the effects of different types
instructions varying from metric-based commands, whe
the user is instructed to walk a certain number of steps u
til the user reaches a landmark, to landmark-based instr
tions, where the user is directed to reach a landmark with
out any metric information. In both cases, the user has |
confirm the successful completion of the instruction befo
receiving the next direction. Over one hundred experime
were conducted to evaluate the effectiveness of the approac .=~
for different types of directions. The volunteers were myost Figure 1: An individual
blindfolded sighted individuals, as well as a volunteethwit with visual impairments
VI. The results suggest that landmark-based instructions, testing the system.
volving a small number of confirmations for highly distingtilandmarks, result in the
highest success ratio. To the best of the authors’ knowleithie is the first work on
indoor localization using only the on-board sensors andctimputational power of a
smart phone and through interaction with the user.
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2. Background

Certain devices focus on local hazard detection to provitazle-avoidance capabili-
ties to users with VI [5, 6]. Most navigation systems, howesee able to locate the user
and provide directions to a user-specified destinationd@artnavigation systems [7, 8]
typically use GPS for localizing the user. Indoor systemmoause GPS signals, which
are blocked by buildings, and alternative localizatiorhteques have been developed:

A) Dead-Reckoning techniques integrate measurements of the human’s motwn. A
celerometers [9] and radar measurements [10] have beerfarshis purpose. Without
any external reference, however, the error in dead-reoigogiows unbounded.

B) Beacon-based approaches augment the physical space with identifier I$es
cons could be retro-reflective digital signs detected bymaera [11], infrared [8] or ul-
trasound identifiers [12]. A popular solution involves RRHYs [13—15]. Nevertheless,
locating identifiers may be hard, as beacons may requirefis@ght or close proximity
to the human. Other beacons, such as wireless nodes [1&uff@}, from multi-path ef-
fects or interference. Another drawback is the significanetand cost spent installing
and calibrating beacons.

C) Sensor-based solutions employ sensors, such as cameras [19], that caotdet
preexisting features of indoor spaces, such as walls osdbor instance, a multi-camera
rig has been developed to estimate the 6 DOF pose of peopieiv[20]. A different
camera system matches physical objects with objects inta@aVirepresentation of the
space [21]. Nevertheless, cameras require good lightinditons, and impose a com-
putational cost prohibitive for portable devices. An aitgtive makes use of a 2D laser
scanner [2, 22]. This method achieves 3D pose estimatiomtiegrating data from an
IMU unit, the laser scanner, and knowledge of the 3D strectdithe space. While laser
scanners can robustly detect low-level features, theyedagively expensive and heavy.

The proposed approach is also a sensor-based solutionplbogsithe user as a sen-
sor together with information from light-weight, affordeflevices, such as a pedometer
and a compass. These sensors are available on smart phdriesameresting to study
the feasibility of using such popular devices to (i) inte¢rftectively with a user with VI;
and (ii) run in real-time localization primitives given thémited resources. To achieve
this objective under the minimalistic and noisy nature efalailable sensors, this work
utilizes probabilistic tools that have been shown effectivrobotics and evaluates their
efficiency for different forms of direction provision.

Bayesian methods for localization work incrementally, where given the piav
belief about the agent’s location, the new belief is comgutgng the latest displacement
and sensor reading. An important issue is how to represehstane the belief distribu-
tion. One method is the Extended Kalman filter (EKF) [23, 24}jch assumes normal
distributions. While Kalman filters provide a compact repreation and return the opti-
mum estimate under certain assumptions, a normal distiibatay not be a good model,
especially for multi-modal distributions. An alternatiigeto use particle filters [25-30],
which sample estimates of the agent’s state. Particlediliez able to represent multi-
modal distribution at the expense of increased computaltioost. Multi-modal distri-
butions arise often in the paper’s application, such as véhdaor is confirmed by the
user, where the belief increases in front of all of the dooithe vicinity of the last esti-
mate. Thus, particle filters appear an appropriate solutid@rms of accuracy. This pa-
per shows that it is also possible to achieve a sufficienttieed solution with a particle
filter approach.



3. Methodology

3.1. High-level operation

Tactile landmarks, such as doors, intersections or floaisitians, play an important
role in the cognitive mapping of indoor spaces by users witfB\4]. By incorporating
the unique sensing capabilities of users with VI, the systéms to provide guidance
in spaces for which the user does not have a prior cognitiye. lae system assumes
the availability of a 2D map with addressing informationgino numbers) and landmark
locations. Then, it follows these steps:

1. A user specifies a start and destination room number teltrav

2. The system computes the shortest path using A* and findsrarks along the path.
3. Directions are provided iteratively upon completionotigh the phone’s built-in

direction.

3.2. Direction Provision

The type of directions significantly effects the efficieneydaeliability of navigation.
Reliability is high when the user is required to confirm thegence of every single
landmark along a path but this is detrimental to efficieneyn¥rsely, when the system
solely relies on odometry, users have a smaller cognitiae but a high chance of getting
lost, due to the inherent propagation of errors associatéddead reckoning. To gain a
better insight in these tradeoffs two different types oédiion provisions were tested:

e Landmark based directions, e.gdmove forward until you reach a hallway on your
left ”. No distance to a landmark is provided. Directions were sidheld based on
the maximum distance between landmarks: (a) 30ft, (b) 5@ft(a) unlimited. Wall
following and door counting strategies were employed ferfitst 2 cases (i.e"Fol-
low the wall on your left until you reach the third dogt”For the last case no wall
following or door counting strategies were used for dit@usi leading to a hallway.

e Metric based directions, e.g., “Walk steps until your reach a landmark on your
left/right”. Within this approach the maximum distancevwe¢n landmarks was also
varied with 30ft, 50ft and unlimited. For exampl&Valk 23 steps until you reach a
door on your right”for the 30ft limit.

Both types of instructions contain a second type of directigth an action on a land-
mark, for example;Turn right into the hallway”.
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Figure 3. The map of the environment and the paths traversed during tezimxental section.




3.3. Localization

Consider a planar system moving amamgtatic landmarks. The system is a human
with VI, and the landmarks corresponds to tactile featurfeimaoor spaces. Lef =
(z,y,0) denote the state of the system. The majpf the world is available and stores
a function which returns whether edehy) is occupied by an obstacle or not. The map
also stores the landmarks present in the world. The landmarks belong thfferent
types{Ly,..., Ly}, such as doors, hallway intersections or floor transitiomsst often

k < n). Landmarkd? in the same clasb; are indistinguishable to the human user.

The datadr = (0(0:T),u(0:T — 1)) available to the system up to tinTeare tran-
sitionsu(0:T" — 1) and observations(0:T'). A transitionu, = (u!,u?) at timet corre-
sponds to a motion where the agent acquires the global atient.’ and moves forward
uf . This transition determines the kinematic transition maod¢he system:

(o1, Yer1, Orr) = (0 +ul - cos(ul),ye +uf - sin(ul), uf) (1)
In this application the translation is measured from a pestermand the orientation with
a compass. An observatiof of a landmark type.; from statet, = (z;, y, ;) implies:

VA GLJ' : ||($tvyt)a(xlvyl)|| <Robs (2)
The above observation model specifies that a user can seaisdradrk typel; in their
vicinity, only if such a landmark’(z*,y") € L; is within a predefined observation dis-
tanceR,;s from the current coordinates of the system, y;).

The objective is to be able to incrementally estimate the’sistates at timeT'.
The general Bayes filter computes a belief distributiyn = P(£r|dr) at timeT" over
&r given the datalr. The computation requires:

a) an initializationB,,

b) a transition modeP (¢'|u, £), describing the probability that the user is at locatjon
if it was previously at and transitioned by, and

c) the observation modét(o|¢, m) describing the likelihood of observingwhen the
user is att and given the map. The map is assumed to be static and correct in this
work.

Then given a normalization factgrthe belief distribution can be updated as follows:

Br=mn- P(0T|£T7m)/P(§T|UT71>§T71) “Bp_y-dér—1 (3)

The computational cost of integrating over all states resittee explicit computation of
Eq. 3 inefficient. Most online algorithms simplify the prebt by approximating Eq. 1.
This work follows a Particle Filter approximation.

Particle Filter It is possible to represer#; through a set of” particlesp’ = (£%, w?)
(i € [1, N]). Each particle stores a state estimgiteogether with a weight?, represent-
ing the probability of¢? being the true state. As the number of particles approaches i
finity, the better the particle filter represents the belisfribution. In order to update the
particle filter given a new transition and an observatiois tork follows an approach
similar to importance sampling [25]. At each time stEpgiven a particle population
{pk,...,p}, atransitionuy and an observationr 1, the following steps are executed:
A. For each particle’. = (&4, w?)

i. Employ the transition modeP (¢4 [ur, £) to acquire£y., ;.

ii. Employ the observation model to compute the new weight | = P(or1/§741,m).
B. Sample a new population &f particles given the weights7. , |



Transition Model The approach collects all the sensor readings that have freen
duced by the sensors during the last time step: (i) oriemtatirom the compass and
(ii) step counts from the pedometer. Typically within a $entime step (in the order of
150ms-300ms), the compass provides multiple orientastimates. These are averaged
to acquireu!. The pedometer typically returns either zero or one stepsared. This
value has to be translated into a distance estimate. To dentipel length of a step, the
implementation employs a short training session for eae. Buring this session the
user traverses a couple of paths between two landmarks witlvik distance. The pe-
dometer computes the number of steps during the executitesé paths and the device
estimates the average length of a step. Based on this estandtthe number of steps
measured by the pedometer online, the approach constrﬁcts

Givenu/ andu?, different levels of noise are added for the applicatiorheftransi-
tion model to each particle. The noise parameters for pagticare drawn from a normal
distribution: (i) (uf)" = N(uf,03) and (i) (uf)" = N(uf,o3). The resulting values
are used in Eq. 1 to acquire the new sigie ;. The corresponding transition frog.
to {7, is then checked on the map to compute whether it correspandsptth that
collides with obstacles. If it does, then the samplingwf)? and (uf)’ is repeated until
either a collision free transition is found or a certain nembf attempts has been tested.

Observation Model There are two cases for computing the weighjs,_, of the parti-
cles. If there was no landmark confirmation by the user dutteglast step, then all of
the weights are equal to 1. If the user confirmed the presemnedandmark of typel ;,
then the approach prunes particles not in the vicinity ohdaadmarks. In particular,
for everyp? the method finds al so that||(z7, y{), (%, 4")|| < Rops. If none of thel’
is of the typeL, thenwiTH = 0. Otherwise, the weight is inversely proportional to the
distance|(z},y!), (z*,y")||, wherel® is the closest landmark of the correct type.
q - -
particles from the observation, while the “sensor re- T R
setting” approach [27] samples from the observatio
only when it deviates substantially from the previ-Figure 4 An illustration of the
ous distribution. The approach implemented by thidarticle resetting process.
work follows a similar idea. When all of the particles
happen to get a weight of 0, which typically occurs when ther genfirms a landmark
1" and the filter has failed to progress the particles to thaniticof that landmark, then
the particles are sampled from the observation as showreifighre to the right. For
each particle?., the method computes the landmark of the confirmed type staoser
to p?.. For the closest such landmafithe line betweep?. andi’ is computed. If there
is line of sight between the particle and the landmark, tihennew particle is sampled
along the line segmep?., 1] and within the radiug?,;s, which represents the greatest
distance from which a landmark can be sensed. The line ségmariroduced in the

computation so as to guarantee that the new particle wiltrags into a room or into a
different corridor.

Sampling The algorithm samples with higher
probability particles with higher weights. It might
happen, however, that all particles get a weight of
(“particle impoverishment”). This is why, the “Mix-
ture MCL" method [26] samples a certain number of




4, Experiments

Setup The system has been implemented as a Java application faptmesource
Google Android smart phone (ver. 1.6). A map of a buildingi®flon the campus of
the University of Nevada, Reno was created in the KeyholekiMatanguage (KML)
and loaded to the application (Fig. 3). The map was manualiyreented with the fol-
lowing landmarksyi) 3 water coolers, (ii) 1 floor transition marked by a metati,
(i) 3 hallway intersections, (iv) 2 hallway turns and (v2 doors.Five different paths
were defined along the corridors of the building. For each,pghere are two alternatives
for directions, with three levels of granularity each, asdafied in Sec. 3.2. Overall, six
different ways to provide directions were tested per palte dpplication communicated
the directions using text to speech software. The user was@bonfirm the completion
of an instruction by pressing the tactile scroll button om$mart phone or could ask for
a direction to be repeated by tapping on the phone’s screen.

Participants Ten volunteers were involved in the experimental sessicerdheld the
phone in their hand while holding a cane in their other (Fégl). One of the volunteers
was legally blind and assisted in the setup of the experisadihiis individual pointed out
landmarks, such as a metal strip on the floor, which sighteglpeypically ignore. Nine
more volunteers were involved that were sighted users ardwehe blindfolded during
the experiments. Typically, sighted users perform worsa@ eople with VI when they
navigate without visual cues. Some of the users had viditedtilding in the past and
were aware of its structure, while others didn’t. This dégancy did not seem to con-
siderably influence the efficiency of users in reaching therdd destination. Each user
executed ten traversals, which corresponded to two tralgeper path using different
types of directions.

Ground Truth To measure the true position of the user, an observer wasdiagadhe
user's motion. This was achieved by placing markers on thar #wery two meters.
Every time the user was crossing a marker, the observer veasdiag the time on a
second smart phone. To recreate the true path, the assam@®that the user moves
with constant speed between markers. Thus, the resolufitimeeaground truth is two
meters.

Parameters The following table provides the parameters of the resuksgnted here.
A relatively high standard deviation for the orientatiomgraeter in the transition model
was chosen because of the unreliable nature of the compagsryAsmall number of
particles (20) was used to achieve real-time performanb#ée\weing able to save output
files at the same time. Recording the status of the applitétia., saving all the mea-
surements, landmark confirmations and the particle fileejtakes three times longer
than the actual estimation by the particle filter. Thus, ireal mpplication the particle
filter can run with at least 3 times the number of particles.

Number of Particles® 20 Landmark radius s 1 meter
Standard Deviation in Orientatiary | 30° | Standard Deviation in Forward Motian; | 0.2 meters
Maximum Number of Tries To Find a Collision Free Transition 5




Success Ratio of Direction ProvisioriTable 1 provides the average distance between the
destination and the actual position achieved by the usearadvexperiments of the same
type. This table shows that most of the paths were completecessfully. In particular,

in 84% of the experiments the distance between the desistthdton and the achieved
position was less thal meters, which is the resolution of the ground truth. In 92% of
the experiments the error was less tlahmeters. It also turns out that landmark-based
directions result in smaller errors and higher successsafiable 2 provides the average
duration of a path until completion. The users were able toglete paths quicker when
they were not asked to confirm a larger number of landmarkg&ghuias the expected
result (“No Max” case in direction provision).

Distance from Destination Path 1| Path 2| Path 3| Path 4| Path 5

(98.14m) | (69.49m)| (72.54m)| (67.66m)| (54.25m)
Landmark No Max 0.46 1.83 0 2.44 1.83
Landmark 9 Meters 0 1.22 0.46 2.19 1.83
Landmark 15 Meters 0.91 0.91 1.83 1.83 2.29
Metric No Max 2.74 0.61 0 2.29 1.83
Metric 9 Meters 3.05 2.74 1.22 0.91 1.22
Metric 15 Meters 4.57 0 0 2.74 1.83

Table 1. Average distance between destination and the user’s @osifion completion (m)

Path Duration Path 1| Path 2| Path 3| Path 4| Path 5
(98.14m) | (69.49m)| (72.54m)| (67.66m)| (54.25m)
Landmark No Max || 155.75 123.67 135.67 119.67 111.25
Landmark 9 Meters || 201.33 177.00 212.00 192.50 138.75
Landmark 15 Meters|| 265.00 155.25 156.50 226.67 110.50
Metric No Max 136.25 180.00 137.50 129.50 108.50
Metric 9 Meters 242.67 252.75 173.67 219.00 169.00
Metric 15 Meters 264.00 173.67 247.00 180.00 147.33

Table 2. Average path duration (sec).

Localization Accuracy Tables 3 and 4 provide the errors for dead reckoning and the
proposed particle filter based approach. In particular éc8pes the average error in
meters between the final true location of the user and thmatiby the corresponding
technique. The estimate from the particle filter corresgatedthe particle which was
closer to the average state of all particles at the lasttitgralt is important to note that
in most cases there were particles closer to the true pogien the “average” particle.
The comparison between the two tables shows that the mafilter approach im-
proves considerably over the result acquired just by iatiény the sensor readings. The
improvement ranges from a factor of 10 to a factor of 2 foratéht paths and direction
provisions. This despite the very small number of partielegployed by the approach.
The important point, however, is the considerable effeat the direction provision pro-
cess has on the efficiency of the particle filtering algoritfitme average error in meters
in the final location for the “Landmark 9 meters” approachpprax. 9.5 meters, while
it goes down to 2.1 meters for the “Landmark 15 meters” apgrpavhich also appears
to be the best solution to the problem. The errors were lowrgudths that contained dis-
tinctive landmarks such as hallways (in the order of 1.2¥).&nd considerably higher



for paths that corresponded to long straight line paths /aéiithe landmarks were the
same (doors). Figure 2 provides an error graph for a speatic/girection provision
combination for dead reckoning and the particle filter applo The expectation is that
as the computational power of portable devices increasesl] be possible to run the
same algorithm for a larger number of particles and thuséuitmprove accuracy.

Dead-Reckoning Path 1| Path 2| Path 3| Path 4| Path 5

(98.14m) | (69.49m)| (72.54m)| (67.66m)| (54.25m)

Landmark No Max || 20.79 25.53 10.83 9.82 13.79

Landmark 9 Meters || 10.19 32.50 17.87 8.59 13.43

Landmark 15 Meters|| 26.81 26.89 16.29 13.12 8.89
Metric No Max 14.91 25.69 15.49 1341 11.65
Metric 9 Meters 18.00 28.99 23.84 5.89 7.53
Metric 15 Meters 19.55 20.95 31.44 3.88 7.90

Table 3. Average error of dead reckoning in final location (m).

Interactive L ocalization Path 1| Path 2| Path 3| Path 4| Path 5

(98.14m) | (69.49m)| (72.54m)| (67.66m)| (54.25m)
Landmark No Max 18.80 15.51 1.32 1.14 5.31
Landmark 9 Meters 10.12 25.95 1.34 3.02 7.35
Landmark 15 Meters 5.47 4.02 3.03 3.63 2.33
Metric No Max 12.95 11.33 3.98 3.75 5.38
Metric 9 Meters 3.20 11.92 0.84 3.05 4.24
Metric 15 Meters 10.43 5.25 3.06 1.48 3.87

Table 4. Average error of the proposed interactive localizatiorcpes (m).

Note that the errors in tables 1 and 4 are not comparables Hiecfirst corresponds
to how close the user reached the desired destination ardstisvo tables correspond
to localization accuracy. The current method for guidirng tiser does not depend on the
localization process and this explains why it is possibtetie error in localization to be
higher than the distance between the true user locationhendetsired one.

5. Discussion

This paper presented a study on the feasibility of navigagiuser with VI through an
indoor environment using a minimalistic and interactivasseg approach achievable
with a smart phone. The sensors used in the experimentsexpensive and available
on popular portable devices. Nevertheless, they are atgdyhérroneous. For instance,
compass sensors, especially cheap ones, perform verypoartoor environments due
to metal structures and electro-magnetic noise. This wes thie case in the building
were the experiments presented in this paper were exeddesghite this challenge, it
was still possible to track a human user who does not have saahfeedback with
sufficient accuracy through an interactive localizatiooggss.

This line of research opens the door to exciting new apptinatfor methods from
robotics in the area of human-centered autonomous irgelligystems. For instance,
minimalistic approaches could be employed to improve laatibn accuracy while



maintaining a low computational overhead (e.g., an InfdionaSpace approach). Simi-
larly, it is interesting to investigate how to automatiggdlan alternative paths that lead
along a larger number of landmarks or along more distingtikhlandmarks, such as
preferring a hallway confirmation over a door. Such planninger uncertainty tools

may significantly boost chances of the user successfullyigrat the destination and

the localization estimate being more accurate.

Future user studies will aim towards involving a larger nemif users with VI, who
will navigate in more complex environments that involve & variety of landmarks.
For instance, buildings with multiple floors that involveeehtors and ramps. Further-
more, in the current system the next direction is providedumdly based on the user’s
confirmation of successfully executing the previous onés Tgasibility study has shown
that sufficiently accurate localization is achievable tlyio such interaction, which may
allow for automatic direction provision based on localizatestimates. This could make
navigation more efficient as the user does not have to engdgsks such as door count-
ing. The overall approach will combine manual (upon useosficmations) and auto-
matic direction provision (based on localization estirsate guide the user.

2D maps of an indoor environment, as used here, can be adddr architectural
blueprints. Nevertheless, it may be more useful to use riglpges of representations.
3D virtual models can be employed to more accurately reptéadoor environments
with multiple levels and features like low ceilings, rampsgeven floors and rails, which
are impediments to navigation for users with VI. It is integ to investigate how to
extract landmarks such as doors or staircases automgticath the geometry of such
models in order to utilize them in navigation and localiaattools for individuals with
VI. Similarly, it is also possible to make use of more re@ishodels of human motion
[31] instead of the unicycle-like system employed in thigkvo
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