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Abstract. Indoor localization and navigation systems for individualswith visual
impairments (VI) typically rely upon extensive augmentation of the physical space
or expensive sensors. Thus, few systems have been adopted. This work conducts
a feasibility study of whether it is possible to localize andguide people with VI
using inexpensive sensors, such as compasses and pedometers,which are available
in portable devices like smart phones. The proposed approachtakes advantage of
interaction between the system and the human user, who confirmsthe presence of
landmarks. Experiments are employed to study what kind of directions are suc-
cessful in assisting human users to reach their destination.These experiments show
that Bayesian localization tools provide sufficient accuracy, while achieving real-
time operation, despite the minimalistic, noisy nature of sensors and the limited
computational resources available on smart phones.
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1. Introduction

Whereas sighted people primarily use vision to navigate, individuals with Vision Impair-
ments (VI) employ compensatory senses (e.g., touch), resulting in reduced mobility. To
address this issue, a number of navigation systems have beendeveloped. Outdoor sys-
tems rely upon GPS, which is not available indoors. Indoor solutions often require phys-
ical augmentation of the environment, such as RFID tags. Though RFID tags are cheap,
they are typically embedded in floors with a resolution of several tags per square feet [1].
Though embedding tags in carpets is feasible, hallways or large open spaces often have
tiles or concrete floors which makes installing tags prohibitively expensive. Alternatives
utilize sophisticated sensors, such as cameras or laser-rangefinders, which are expensive
and may impede mobility due to weight [2].

This paper proposes a low-cost solution that does not require physical augmentation
and depends on affordable, light-weight sensors, such as a pedometer and a compass, that
are already available on popular devices, such as smart phones. The approach utilizes
interaction with the user through an audio/speech interface to provide directions using
landmarks that are recognizable by individuals with VI, such as doors, hallway intersec-
tions and floor transitions. The user confirms the presence ofthe landmarks along the
provided path through a smart phone, based on the Android OS.This allows the system
to track the user’s location by using the sensor readings, knowledge of the indoor envi-
ronment and the user’s landmark confirmations. The premise of the approach is that:
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• Individuals with VI are effective in recognizing landmarksthrough touch, for exam-
ple using a cane, in their daily navigation [3, 4]. The proposed system, through in-
teraction with the user, employs these landmarks to guide the users and track one’s
location.

• Indoor spaces, while complex, are often highly constrained. For example, a human
has to cross a door to enter a room, an easily recognizable event by a user with VI.
Veering is less likely to occur in hallways due to the presence of walls.

• While compasses and pedometers are erroneous, when integrated in the proposed
overall scheme, they provide a sufficiently good initial estimate for the user’s motion.
The first objective is to show that the overall scheme succeeds with in guiding a user

with VI to a desired destination in an indoor environment. The localization approach uti-
lizes Bayesian tools based on particle filters and is able to track the user employing the
limited resources of portable devices. Each particle estimates the user’s location and car-
ries a weight of how probable this estimate is. As the user moves, each particle is updated
based on data received from sensors, using the map of the environment to prune improb-
able transitions and landmark confirmations to recompute weights. Resetting techniques
are employed in the case the weight of all particles is equal to 0.

The second objective is to emphasize that the method’s
performance depends on the directions provided to the user.
Thus, this paper compares the effects of different types of
instructions varying from metric-based commands, where
the user is instructed to walk a certain number of steps un-
til the user reaches a landmark, to landmark-based instruc-
tions, where the user is directed to reach a landmark with-
out any metric information. In both cases, the user has to
confirm the successful completion of the instruction before
receiving the next direction. Over one hundred experiments
were conducted to evaluate the effectiveness of the approach
for different types of directions. The volunteers were mostly
blindfolded sighted individuals, as well as a volunteer with
VI. The results suggest that landmark-based instructions,in-
volving a small number of confirmations for highly distinctive landmarks, result in the
highest success ratio. To the best of the authors’ knowledge, this is the first work on
indoor localization using only the on-board sensors and thecomputational power of a
smart phone and through interaction with the user.

Figure 2. a) Ground truth vs. dead-reckoning vs. particle filtering. b) Error graph.



2. Background

Certain devices focus on local hazard detection to provide obstacle-avoidance capabili-
ties to users with VI [5,6]. Most navigation systems, however, are able to locate the user
and provide directions to a user-specified destination. Outdoor navigation systems [7,8]
typically use GPS for localizing the user. Indoor systems cannot use GPS signals, which
are blocked by buildings, and alternative localization techniques have been developed:

A) Dead-Reckoning techniques integrate measurements of the human’s motion. Ac-
celerometers [9] and radar measurements [10] have been usedfor this purpose. Without
any external reference, however, the error in dead-reckoning grows unbounded.

B) Beacon-based approaches augment the physical space with identifiers. Such bea-
cons could be retro-reflective digital signs detected by a camera [11], infrared [8] or ul-
trasound identifiers [12]. A popular solution involves RFIDtags [13–15]. Nevertheless,
locating identifiers may be hard, as beacons may require lineof sight or close proximity
to the human. Other beacons, such as wireless nodes [16–18],suffer from multi-path ef-
fects or interference. Another drawback is the significant time and cost spent installing
and calibrating beacons.

C) Sensor-based solutions employ sensors, such as cameras [19], that can detect
preexisting features of indoor spaces, such as walls or doors. For instance, a multi-camera
rig has been developed to estimate the 6 DOF pose of people with VI [20]. A different
camera system matches physical objects with objects in a virtual representation of the
space [21]. Nevertheless, cameras require good lighting conditions, and impose a com-
putational cost prohibitive for portable devices. An alternative makes use of a 2D laser
scanner [2, 22]. This method achieves 3D pose estimation by integrating data from an
IMU unit, the laser scanner, and knowledge of the 3D structure of the space. While laser
scanners can robustly detect low-level features, they are relatively expensive and heavy.

The proposed approach is also a sensor-based solution. It employs the user as a sen-
sor together with information from light-weight, affordable devices, such as a pedometer
and a compass. These sensors are available on smart phones and it is interesting to study
the feasibility of using such popular devices to (i) interact effectively with a user with VI;
and (ii) run in real-time localization primitives given their limited resources. To achieve
this objective under the minimalistic and noisy nature of the available sensors, this work
utilizes probabilistic tools that have been shown effective in robotics and evaluates their
efficiency for different forms of direction provision.

Bayesian methods for localization work incrementally, where given the previous
belief about the agent’s location, the new belief is computed using the latest displacement
and sensor reading. An important issue is how to represent and store the belief distribu-
tion. One method is the Extended Kalman filter (EKF) [23, 24],which assumes normal
distributions. While Kalman filters provide a compact representation and return the opti-
mum estimate under certain assumptions, a normal distribution may not be a good model,
especially for multi-modal distributions. An alternativeis to use particle filters [25–30],
which sample estimates of the agent’s state. Particle filters are able to represent multi-
modal distribution at the expense of increased computational cost. Multi-modal distri-
butions arise often in the paper’s application, such as whena door is confirmed by the
user, where the belief increases in front of all of the doors in the vicinity of the last esti-
mate. Thus, particle filters appear an appropriate solutionin terms of accuracy. This pa-
per shows that it is also possible to achieve a sufficient real-time solution with a particle
filter approach.



3. Methodology

3.1. High-level operation

Tactile landmarks, such as doors, intersections or floor transitions, play an important
role in the cognitive mapping of indoor spaces by users with VI [3,4]. By incorporating
the unique sensing capabilities of users with VI, the systemaims to provide guidance
in spaces for which the user does not have a prior cognitive map. The system assumes
the availability of a 2D map with addressing information (room numbers) and landmark
locations. Then, it follows these steps:
1. A user specifies a start and destination room number to travel to.
2. The system computes the shortest path using A* and finds landmarks along the path.
3. Directions are provided iteratively upon completion through the phone’s built-in

speaker. The user presses a button on the phone after successfully executing each
direction.

3.2. Direction Provision

The type of directions significantly effects the efficiency and reliability of navigation.
Reliability is high when the user is required to confirm the presence of every single
landmark along a path but this is detrimental to efficiency. Conversely, when the system
solely relies on odometry, users have a smaller cognitive load but a high chance of getting
lost, due to the inherent propagation of errors associated with dead reckoning. To gain a
better insight in these tradeoffs two different types of direction provisions were tested:
• Landmark based directions, e.g.,“move forward until you reach a hallway on your

left ” . No distance to a landmark is provided. Directions were subdivided based on
the maximum distance between landmarks: (a) 30ft, (b) 50ft and (c) unlimited. Wall
following and door counting strategies were employed for the first 2 cases (i.e.,“Fol-
low the wall on your left until you reach the third door”). For the last case no wall
following or door counting strategies were used for directions leading to a hallway.

• Metric based directions, e.g., “Walkx steps until your reach a landmark on your
left/right”. Within this approach the maximum distance between landmarks was also
varied with 30ft, 50ft and unlimited. For example:“Walk 23 steps until you reach a
door on your right” for the 30ft limit.

Both types of instructions contain a second type of direction with an action on a land-
mark, for example,“Turn right into the hallway”.

Figure 3. The map of the environment and the paths traversed during the experimental section.



3.3. Localization

Consider a planar system moving amongn static landmarks. The system is a human
with VI, and the landmarks corresponds to tactile features of indoor spaces. Letξ =
(x, y, θ) denote the state of the system. The mapm of the world is available and stores
a function which returns whether each(x, y) is occupied by an obstacle or not. The map
also stores then landmarks present in the world. The landmarks belong tok different
types{L1, . . . , Lk}, such as doors, hallway intersections or floor transitions (most often
k < n). Landmarksli in the same classLj are indistinguishable to the human user.

The datadT = (o(0:T ), u(0:T − 1)) available to the system up to timeT are tran-
sitionsu(0:T − 1) and observationso(0:T ). A transitionut = (uf

t , u
θ
t ) at timet corre-

sponds to a motion where the agent acquires the global orientationuθ
t and moves forward

u
f
t . This transition determines the kinematic transition model of the system:

(xt+1, yt+1, θt+1) = (xt + u
f
t · cos(uθ

t ), yt + u
f
t · sin(uθ

t ), u
θ
t ) (1)

In this application the translation is measured from a pedometer and the orientation with
a compass. An observationojt of a landmark typeLj from stateξt = (xt, yt, θt) implies:

∃ li ∈ Lj : ||(xt, yt), (x
i, yi)|| < Robs (2)

The above observation model specifies that a user can sense a landmark typeLj in their
vicinity, only if such a landmarkli(xi, yi) ∈ Lj is within a predefined observation dis-
tanceRobs from the current coordinates of the system(xt, yt).

The objective is to be able to incrementally estimate the user’s stateξT at timeT .
The general Bayes filter computes a belief distributionBT = P (ξT |dT ) at timeT over
ξT given the datadT . The computation requires:
a) an initializationB0,
b) a transition modelP (ξ′|u, ξ), describing the probability that the user is at locationξ′

if it was previously atξ and transitioned byu, and
c) the observation modelP (o|ξ,m) describing the likelihood of observingo when the

user is atξ and given the mapm. The map is assumed to be static and correct in this
work.

Then given a normalization factorη the belief distribution can be updated as follows:

BT = η · P (oT |ξT ,m)

∫
P (ξT |uT−1, ξT−1) ·BT−1 · dξT−1 (3)

The computational cost of integrating over all states renders the explicit computation of
Eq. 3 inefficient. Most online algorithms simplify the problem by approximating Eq. 1.
This work follows a Particle Filter approximation.

Particle Filter It is possible to representBT through a set ofP particlespi = (ξi, wi)
(i ∈ [1, N ]). Each particle stores a state estimateξi together with a weightwi, represent-
ing the probability ofξi being the true state. As the number of particles approaches in-
finity, the better the particle filter represents the belief distribution. In order to update the
particle filter given a new transition and an observation, this work follows an approach
similar to importance sampling [25]. At each time stepT , given a particle population
{p1T , . . . , p

P
T }, a transitionuT and an observationoT+1, the following steps are executed:

A. For each particlepiT = (ξiT , w
i
T )

i. Employ the transition modelP (ξiT+1
|uT , ξ

i
T ) to acquire:ξiT+1

.
ii. Employ the observation model to compute the new weightwi

T+1
= P (oT+1|ξT+1,m).

B. Sample a new population ofP particles given the weightswi
T+1



Transition Model The approach collects all the sensor readings that have beenpro-
duced by the sensors during the last time step: (i) orientations from the compass and
(ii) step counts from the pedometer. Typically within a single time step (in the order of
150ms-300ms), the compass provides multiple orientation estimates. These are averaged
to acquireuθ

t . The pedometer typically returns either zero or one step measured. This
value has to be translated into a distance estimate. To compute the length of a step, the
implementation employs a short training session for each user. During this session the
user traverses a couple of paths between two landmarks with known distance. The pe-
dometer computes the number of steps during the execution ofthese paths and the device
estimates the average length of a step. Based on this estimate and the number of steps
measured by the pedometer online, the approach constructsu

f
t .

Givenuf
t anduθ

t , different levels of noise are added for the application of the transi-
tion model to each particle. The noise parameters for particle pi are drawn from a normal
distribution: (i) (uf

t )
i = N (uf

t , σ
2
f ) and (ii) (uθ

t )
i = N (uθ

t , σ
2
θ). The resulting values

are used in Eq. 1 to acquire the new stateξiT+1
. The corresponding transition fromξiT

to ξiT+1
is then checked on the map to compute whether it corresponds to a path that

collides with obstacles. If it does, then the sampling of(uf
t )

i and(uθ
t )

i is repeated until
either a collision free transition is found or a certain number of attempts has been tested.

Observation Model There are two cases for computing the weightswi
T+1

of the parti-
cles. If there was no landmark confirmation by the user duringthe last step, then all of
the weights are equal to 1. If the user confirmed the presence of a landmark of typeLj ,
then the approach prunes particles not in the vicinity of such landmarks. In particular,
for everypq the method finds allli so that||(xq

t , y
q
t ), (x

i, yi)|| < Robs. If none of theli

is of the typeLj , thenwi
T+1

= 0. Otherwise, the weight is inversely proportional to the
distance||(xq

t , y
q
t ), (x

i, yi)||, whereli is the closest landmark of the correct type.

Sampling The algorithm samples with higher
probability particles with higher weights. It might
happen, however, that all particles get a weight of 0
(“particle impoverishment”). This is why, the “Mix-
ture MCL” method [26] samples a certain number of
particles from the observation, while the “sensor re-
setting” approach [27] samples from the observation
only when it deviates substantially from the previ-
ous distribution. The approach implemented by this
work follows a similar idea. When all of the particles
happen to get a weight of 0, which typically occurs when the user confirms a landmark
li and the filter has failed to progress the particles to the vicinity of that landmark, then
the particles are sampled from the observation as shown in the figure to the right. For
each particlepqT , the method computes the landmark of the confirmed type that is closer
to p

q
T . For the closest such landmarkli, the line betweenpqT andli is computed. If there

is line of sight between the particle and the landmark, then the new particle is sampled
along the line segment[pqT , l

i] and within the radiusRobs, which represents the greatest
distance from which a landmark can be sensed. The line segment is introduced in the
computation so as to guarantee that the new particle will notcross into a room or into a
different corridor.



4. Experiments

Setup The system has been implemented as a Java application for theopen-source
Google Android smart phone (ver. 1.6). A map of a building’s floor on the campus of
the University of Nevada, Reno was created in the Keyhole Markup Language (KML)
and loaded to the application (Fig. 3). The map was manually augmented with the fol-
lowing landmarks:(i) 3 water coolers, (ii) 1 floor transition marked by a metal strip,
(iii) 3 hallway intersections, (iv) 2 hallway turns and (v) 72 doors.Five different paths
were defined along the corridors of the building. For each path, there are two alternatives
for directions, with three levels of granularity each, as specified in Sec. 3.2. Overall, six
different ways to provide directions were tested per path. The application communicated
the directions using text to speech software. The user was able to confirm the completion
of an instruction by pressing the tactile scroll button on the smart phone or could ask for
a direction to be repeated by tapping on the phone’s screen.

Participants Ten volunteers were involved in the experimental session. Users held the
phone in their hand while holding a cane in their other (Figure 1). One of the volunteers
was legally blind and assisted in the setup of the experiments. This individual pointed out
landmarks, such as a metal strip on the floor, which sighted people typically ignore. Nine
more volunteers were involved that were sighted users and who were blindfolded during
the experiments. Typically, sighted users perform worse than people with VI when they
navigate without visual cues. Some of the users had visited the building in the past and
were aware of its structure, while others didn’t. This discrepancy did not seem to con-
siderably influence the efficiency of users in reaching the desired destination. Each user
executed ten traversals, which corresponded to two traversals per path using different
types of directions.

Ground Truth To measure the true position of the user, an observer was recording the
user’s motion. This was achieved by placing markers on the floor every two meters.
Every time the user was crossing a marker, the observer was recording the time on a
second smart phone. To recreate the true path, the assumption was that the user moves
with constant speed between markers. Thus, the resolution of the ground truth is two
meters.

Parameters The following table provides the parameters of the results presented here.
A relatively high standard deviation for the orientation parameter in the transition model
was chosen because of the unreliable nature of the compass. Avery small number of
particles (20) was used to achieve real-time performance, while being able to save output
files at the same time. Recording the status of the application (e.g., saving all the mea-
surements, landmark confirmations and the particle filter state) takes three times longer
than the actual estimation by the particle filter. Thus, in a real application the particle
filter can run with at least 3 times the number of particles.

Number of ParticlesP 20 Landmark radiusRobs 1 meter

Standard Deviation in Orientationσθ 30
o Standard Deviation in Forward Motionσf 0.2 meters

Maximum Number of Tries To Find a Collision Free Transition 5



Success Ratio of Direction ProvisionTable 1 provides the average distance between the
destination and the actual position achieved by the user over all experiments of the same
type. This table shows that most of the paths were completed successfully. In particular,
in 84% of the experiments the distance between the desired destination and the achieved
position was less than2 meters, which is the resolution of the ground truth. In 92% of
the experiments the error was less than3.5 meters. It also turns out that landmark-based
directions result in smaller errors and higher success ratios. Table 2 provides the average
duration of a path until completion. The users were able to complete paths quicker when
they were not asked to confirm a larger number of landmarks, which was the expected
result (“No Max” case in direction provision).

Distance from Destination Path 1
(98.14m)

Path 2
(69.49m)

Path 3
(72.54m)

Path 4
(67.66m)

Path 5
(54.25m)

Landmark No Max 0.46 1.83 0 2.44 1.83

Landmark 9 Meters 0 1.22 0.46 2.19 1.83

Landmark 15 Meters 0.91 0.91 1.83 1.83 2.29

Metric No Max 2.74 0.61 0 2.29 1.83

Metric 9 Meters 3.05 2.74 1.22 0.91 1.22

Metric 15 Meters 4.57 0 0 2.74 1.83

Table 1. Average distance between destination and the user’s position upon completion (m)

Path Duration Path 1
(98.14m)

Path 2
(69.49m)

Path 3
(72.54m)

Path 4
(67.66m)

Path 5
(54.25m)

Landmark No Max 155.75 123.67 135.67 119.67 111.25

Landmark 9 Meters 201.33 177.00 212.00 192.50 138.75

Landmark 15 Meters 265.00 155.25 156.50 226.67 110.50

Metric No Max 136.25 180.00 137.50 129.50 108.50

Metric 9 Meters 242.67 252.75 173.67 219.00 169.00

Metric 15 Meters 264.00 173.67 247.00 180.00 147.33

Table 2. Average path duration (sec).

Localization Accuracy Tables 3 and 4 provide the errors for dead reckoning and the
proposed particle filter based approach. In particular it specifies the average error in
meters between the final true location of the user and the estimate by the corresponding
technique. The estimate from the particle filter corresponds to the particle which was
closer to the average state of all particles at the last iteration. It is important to note that
in most cases there were particles closer to the true position than the “average” particle.

The comparison between the two tables shows that the particle filter approach im-
proves considerably over the result acquired just by integrating the sensor readings. The
improvement ranges from a factor of 10 to a factor of 2 for different paths and direction
provisions. This despite the very small number of particlesemployed by the approach.
The important point, however, is the considerable effect that the direction provision pro-
cess has on the efficiency of the particle filtering algorithm. The average error in meters
in the final location for the “Landmark 9 meters” approach is approx. 9.5 meters, while
it goes down to 2.1 meters for the “Landmark 15 meters” approach, which also appears
to be the best solution to the problem. The errors were lower for paths that contained dis-
tinctive landmarks such as hallways (in the order of 1.2-2.5m) and considerably higher



for paths that corresponded to long straight line paths where all the landmarks were the
same (doors). Figure 2 provides an error graph for a specific path/direction provision
combination for dead reckoning and the particle filter approach. The expectation is that
as the computational power of portable devices increases, it will be possible to run the
same algorithm for a larger number of particles and thus further improve accuracy.

Dead-Reckoning Path 1
(98.14m)

Path 2
(69.49m)

Path 3
(72.54m)

Path 4
(67.66m)

Path 5
(54.25m)

Landmark No Max 20.79 25.53 10.83 9.82 13.79

Landmark 9 Meters 10.19 32.50 17.87 8.59 13.43

Landmark 15 Meters 26.81 26.89 16.29 13.12 8.89

Metric No Max 14.91 25.69 15.49 13.41 11.65

Metric 9 Meters 18.00 28.99 23.84 5.89 7.53

Metric 15 Meters 19.55 20.95 31.44 3.88 7.90

Table 3. Average error of dead reckoning in final location (m).

Interactive Localization Path 1
(98.14m)

Path 2
(69.49m)

Path 3
(72.54m)

Path 4
(67.66m)

Path 5
(54.25m)

Landmark No Max 18.80 15.51 1.32 1.14 5.31

Landmark 9 Meters 10.12 25.95 1.34 3.02 7.35

Landmark 15 Meters 5.47 4.02 3.03 3.63 2.33

Metric No Max 12.95 11.33 3.98 3.75 5.38

Metric 9 Meters 3.20 11.92 0.84 3.05 4.24

Metric 15 Meters 10.43 5.25 3.06 1.48 3.87

Table 4. Average error of the proposed interactive localization process (m).

Note that the errors in tables 1 and 4 are not comparable, since the first corresponds
to how close the user reached the desired destination and thelast two tables correspond
to localization accuracy. The current method for guiding the user does not depend on the
localization process and this explains why it is possible for the error in localization to be
higher than the distance between the true user location and the desired one.

5. Discussion

This paper presented a study on the feasibility of navigating a user with VI through an
indoor environment using a minimalistic and interactive sensing approach achievable
with a smart phone. The sensors used in the experiments are inexpensive and available
on popular portable devices. Nevertheless, they are also highly erroneous. For instance,
compass sensors, especially cheap ones, perform very poorly in indoor environments due
to metal structures and electro-magnetic noise. This was also the case in the building
were the experiments presented in this paper were executed.Despite this challenge, it
was still possible to track a human user who does not have any visual feedback with
sufficient accuracy through an interactive localization process.

This line of research opens the door to exciting new applications for methods from
robotics in the area of human-centered autonomous intelligent systems. For instance,
minimalistic approaches could be employed to improve localization accuracy while



maintaining a low computational overhead (e.g., an Information Space approach). Simi-
larly, it is interesting to investigate how to automatically plan alternative paths that lead
along a larger number of landmarks or along more distinguishable landmarks, such as
preferring a hallway confirmation over a door. Such planningunder uncertainty tools
may significantly boost chances of the user successfully arriving at the destination and
the localization estimate being more accurate.

Future user studies will aim towards involving a larger number of users with VI, who
will navigate in more complex environments that involve a larger variety of landmarks.
For instance, buildings with multiple floors that involve elevators and ramps. Further-
more, in the current system the next direction is provided manually based on the user’s
confirmation of successfully executing the previous one. This feasibility study has shown
that sufficiently accurate localization is achievable through such interaction, which may
allow for automatic direction provision based on localization estimates. This could make
navigation more efficient as the user does not have to engage in tasks such as door count-
ing. The overall approach will combine manual (upon user’s confirmations) and auto-
matic direction provision (based on localization estimates) to guide the user.

2D maps of an indoor environment, as used here, can be acquired from architectural
blueprints. Nevertheless, it may be more useful to use richer types of representations.
3D virtual models can be employed to more accurately represent indoor environments
with multiple levels and features like low ceilings, ramps,uneven floors and rails, which
are impediments to navigation for users with VI. It is interesting to investigate how to
extract landmarks such as doors or staircases automatically from the geometry of such
models in order to utilize them in navigation and localization tools for individuals with
VI. Similarly, it is also possible to make use of more realistic models of human motion
[31] instead of the unicycle-like system employed in this work.
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