[Blindmath] D Y verses Delta Y
Fernández del Campo Sánchez, Jose Enrique
EFCS at once.es
Fri Apr 5 08:07:04 UTC 2013
"Delta" or "increment" are magnitudes, quantities: when you increment q quantity delta x, on obtains an increment delta y of the function y=f(x).
But "differential" d x and d y are concepts relatif to derivative.
It is very simple if you see then raphically, calling to the tangent of the courbe. And in multivariable functions, they are not comparable.
Saludos
José Enrique
-----Mensaje original-----
De: Blindmath [mailto:blindmath-bounces at nfbnet.org] En nombre de GianniP46
Enviado el: viernes, 05 de abril de 2013 6:13
Para: BlindMathList
Asunto: [Blindmath] D Y verses Delta Y
Hi all,
I am brushing up on some Calculus. I find myself confused between the difference d y and delta y and d x and delta x. It seams that d x and delta x are usually the same, but there is a difference between d y and delta y.
For example, if you have a function Y = X squared, and you want to find d y and delta y at x = 2 and d x =1, Then D Y = 2X DX which = 2 times2 times 1 which =4 Delta y = f of x plus delta x minus f of x which = (x + delta x) squared minus x squared which = (2+1) squared minus 2 squared which = 9 minus 4 = 5 so d x = 4 and d y = 5.
I understand that d y is the y component or the rise of the slope of the tangent line at x = 2 of x squared, but what does a delta y value of 5 mean for this function?
The book I am looking at makes it seam that d y has to do with the y component of the tangent line and delta y has to do with the y component of the curve. This is not making sense to me for some reason. Can someone explain? Feeling very dumb and frustrated right now. lol
Gian Carlo Pedulla
GianniP46 at earthlink.net
LETS! GO! METS!
_______________________________________________
Blindmath mailing list
Blindmath at nfbnet.org
http://nfbnet.org/mailman/listinfo/blindmath_nfbnet.org
To unsubscribe, change your list options or get your account info for Blindmath:
http://nfbnet.org/mailman/options/blindmath_nfbnet.org/efcs%40once.es
**Este mensaje y cualquier fichero anexo se dirigen exclusivamente a su destinatario y pueden contener información privilegiada o CONFIDENCIAL. Si no es Vd. el destinatario indicado, queda notificado de que la utilización, divulgación y/o copia sin autorización está prohibida en virtud de la legislación vigente. Si ha recibido este mensaje por error, le rogamos que nos lo comunique inmediatamente por esta misma vía y proceda a su destrucción**
***Antes de imprimir este mensaje o sus anexos, asegúrese de que es necesario. El medio ambiente está en nuestra mano***
More information about the BlindMath
mailing list